dkfr.net
当前位置:首页 >> y 2y 3y E 3x >>

y 2y 3y E 3x

y''+3y'+2y=3xe^(-x) 特征方程r^2+3r+2=0的解为r1=-1,r2=-2 因此齐次方程y''+3y'+2y=0的通解为y1=Ae^(-x)+Be^(-2x) 用常数变易法求特解,设y*=A(x)e^(-x)+B(x)e^(-2x) A'e^(-x)+B'e^(-2x)=0 -A'e^(-x)-2B'e^(-2x)=3xe^(-x) 解得A'=3x,B'=-3xe^x ...

y''+2y‘-3y=0的特征方程为:λ²+2λ-3=0则(λ+3)(λ-1)=0,所以λ=1,λ=-3y''+2y‘-3y=0通解为;y=C1e^x+C2e^(-3x),(C1,C2为任意常数)y''+2y‘-3y=e^x的特解形式是y*=bxe^x,则y*‘=be^x+bxe^x,y*"=2be^x+bxe^x代入方程,(2be^x+bxe^x)+2(be^x+bxe^x)-3b...

特征方程:r^2+2r-3=0 r=-3,r=1 所以其齐次方程通解为:y=C1e^(-3x)+C2e^x 这个题目,通解怎么包含了特解?

求y''-3y'+2y=3x-2e^x的一个特解 设特解为y*=a+bx+cxe^x y*'=b+ce^x+cxe^x=b+(c+cx)e^x; y*''=ce^x+(c+cx)e^x=(2c+cx)e^x; 代入原方程得: (2c+cx)e^x-3b-3(c+cx)e^x+2(a+bx+cxe^x)=3x-2e^x 2ce^x+cxe^x-3b-3ce^x-3cxe^x+2a+2bx+2cxe^x=3x-2e^x ...

求y''-3y'+2y=3x-2e^x的一个特解 设特解为y*=a+bx+cxe^x y*'=b+ce^x+cxe^x=b+(c+cx)e^x; y*''=ce^x+(c+cx)e^x=(2c+cx)e^x; 代入原方程得: (2c+cx)e^x-3b-3(c+cx)e^x+2(a+bx+cxe^x)=3x-2e^x 2ce^x+cxe^x-3b-3ce^x-3cxe^x+2a+2bx+2cxe^x=3x-2e^x ...

8000兄弟的答案真好

E(3X-2Y)=3EX-2EY=3 D(2X-3Y)=4DX+9DY=192

因为非齐次项是2,为常数,因此可以设特解为 y=A 如果次数高于x的一次方,-2y这一项将保留这个高次项,无法抵消,因此高于一次项的系数均为0. 代入原方程 2y''-3y'-2y=-2A=2, 求得 A=-1 所以特解为y=-1

网站首页 | 网站地图
All rights reserved Powered by www.dkfr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com